Search This Blog

Thursday, August 27, 2020

Flax Fiber In Your Shake Now In McLaren F1 Seat

McLaren collaborates with Bcomp to develop F1's first natural fibre composite racing seat.


We’ve been working with Swiss sustainable lightweighting specialist Bcomp to develop just that, starting with a natural fibre racing seat for Carlos Sainz and Lando Norris – the very first F1 car part to be made of renewable textile fibres. By optimising the mechanical properties of flax fibres through fabric architecture, it’s been possible to make a seat with the required strength and stiffness, but with a 75% lower CO2 footprint compared to its carbon fibre counterpart.

What is flax and how is it used in the natural fibre composite seat?

Primarily used in the production of linen, flax is an incredibly versatile plant that has been around for millions of years. It differs from many biomaterials in that it’s ideal for use in crop rotation programmes and can be grown without directly competing with food crops. Flax is a CO2-neutral raw material and its fibres are biodegradable. At the end of the seat’s life, for example, it can be ground down into a new base material or thermally recycled without residual waste, rather than end up in landfill.

Inspired by the thin veins on the back of leaves, Bcomp’s proprietary powerRibs™ technology provides a three-dimensional grid structure on one side of the seat, which is then used to reinforce Bcomp’s optimally spun and woven flax fibre reinforcement fabric, ampliTex™. Made by twisting flax fibres to form a thick yarn, the powerRibs™ act as a backbone to the ampliTex™ flax fabric that is bonded to it.


“The original carbon fibre seat design was reverse-engineered by Bcomp, and then we optimised and manufactured the new design. The seat was run in pre-season testing without any problems and we hope to be racing with Bcomp flax seats in the near future.”

“We believe this seat functions as a conclusive demonstration that our technologies are ready to compete in the top tier of motorsport,” adds Fischer. “We match conventional carbon fibre while lowering the eco footprint by 75%, cutting costs, reducing vibrations and improving safety – all of which are highly relevant to achieving a sustainable future for motorsport and mobility.”


A high-performance, sustainable lightweighting solution


While the environmental benefits are clear, the mechanical properties of flax make it an attractive renewable raw material for high-performance composites. The tubular structure of flax fibres provides low density and high stiffness, which affords the opportunity to reduce weight while simultaneously improving vibration damping, as well as resistance to breakage, torsion and compression.

Just as we did in 1981, we’re looking to stay ahead of the curve. And that’s why we’re exploring the use of natural fibre composites which have the potential to be the next, sustainable, step forward in lightweighting. Flax fibres, for example, are 9% lighter than any equivalent carbon material and offer significantly better vibration damping.


Safety first

When it does break, unlike carbon fibre, it’s not prone to brittle fracture and splintering – a property that’s enhanced further by the structure of Bcomp’s powerRibs™ which stiffen and confine the damage zone. “The composite of ampliTex™ and powerRibs™ is not as fragile, and while it still breaks, the softer debris remains attached to the main structure with the help of the powerRibs™, which help dissipate the energy,” explains Fischer.

 

Cost conscious

The advantages don’t stop there. With a budget cap set be introduced from 2021, many F1 teams will need to reduce costs while maintaining and improving performance – no mean feat in a sport where, typically, a team can pursue more development routes the more resource it has available. Teams are going to have to work even smarter, and with Bcomp’s ampliTex™ and powerRibs™ solutions reducing raw material cost by up to 30% compared to traditional carbon fibre, this significant saving can free up budget to explore other ways of improving car performance.


It’s just the beginning

“Where we see significant potential is in the non-critical, semi-structural areas of the car, such as the driver’s seat, as well as off the car,” says Fischer. And it’s the latter, reveals Foster, where the immediate scope for further adoption of natural fibre composites really lies: “When used intelligently, the flax fibres reduce weight and cost, while maintaining and, in some cases, even improving performance. There are a range of possible applications beyond the car itself, including pit gear, truck panels, packing cases, timing stands and mould tools.”

Take mould tools, for example. Currently, most of the moulds used to make parts of the car, are made of carbon fibre composite because it has low thermal expansion. However, flax fibres also possess this property, potentially making them a suitable tooling material for moulding performance parts that are made from standard composites. So even if the part being produced isn’t made from natural fibre materials, the tool to produce it can be – allowing us to reduce the cost of mould tools and our carbon footprint.

Source: McLaren Racing

No comments:

Post a Comment